

BANKABLE ENERGY ASSETS, IN LONDON'S SOUTH BANK SIRACH Event 4th July, Islington

Rajvant Nijjhar - BankEnergi

Partners: "PFER" Design & Concepts (Stage 1)

SOUTH BANK EMPLOYERS' GROUP

Why local energy is key:

- Tackling climate change through projects or initiatives that local area benefits from
- Transition to a fossil free economy
- Meeting & challenging UK & Global Carbon Budgets
- At local level focus on people and engagement: trading to reduce, manage, generate or purchase energy

What it means for South Bank energy users:

- Asset utilisation = fewer power stations
- Local resilience & security of supply
- Local energy trading means greater price stability
 - Smarter building management =
 better use of energy tariffs
- Impact on mitigating climate change in growing population

Vision

Create local energy marketplace whilst achieving wider socio-economic and environmental outcomes of alleviating fuel poverty, improving air quality and reducing carbon emissions.

ASSET SELECTION:

Identify local assets and building to trade heat, power and install EV superchargers

TECHNOLOGY DEPLOYMENT:

Optimising energy use.
Maximising energy storage.
Maximising generation.

LOCAL ENERGY TRADING:

Forecasting demand. Trading surpluses.
Assessing capacity and balancing demand.

What's the story so far

- Need to act now for Climate mitigation
- London Climate action week
- Limited opportunity for trading on a local level
- What happens with additional spill if you have generation assets such as Solar PV?
- How do we manage the grid demand EV Explosion
- What do you do with the waste heat we have?
- How do we meet carbon budgets and air quality goals

What's the EV story

London is leading with its Ultra Low Emissions Zones. ULEZ. 50,000 charging point aspiration by 2025

- Taxis electrifying: LEVC & Addison Lee, Uber
- 8000 surveyed, 1.3% current EV users
- Waiting time most important (60%) followed by:
- Retail, Environmental issues, location, availability of chargepoint and cost (all at 30% each)
- At least 2 charges / break per day

Frequently used ranks in central London

The ranks displayed on the map are:

- Stations:
 - Paddington (A), King's Cross / St. Pancras (B), Waterloo (C), Euston (D), Victoria (E), Liverpool Street (F), Marylebone(G).
- Hotels:
 - In W1 postcode area.
- - Heathrow (L), London City (M).

What we are:

- Developing a Local market for trading energy
- Micro-grid and aggregation to macro-grid
- Buy BankEnergi energy Local, independent and green is brand
- Using existing assets, or new (CHP, batteries, solar PV generation)
- Working in grid constrained areas
- EV charger agnostic energy supplier agnostic
- EV & ASHP demand will make sub-stations more constrained

Business model & data integration

Merit 1: DEMAND + FLEX

Merit 2: DEMAND + FLEX + STORAGE

Merit 3: DEMAND + FLEX + STORAGE + GENERATION

Merit EV: BATTERY + SUPERCHARGERS

E.g. Building – level data:

- Half-hourly energy for profiling
- Peak demands
- BMS information, operational data
- Space and land for asset deployment

E.g. Grid – level data:

- Forecasting demand to half hour.
- Substation level data e.g. headroom
- Generation assets data
- EVs: time, routes & length of use
- Locations of charge points

OPTIMISING ASSETS | MAXIMISING STORAGE | MAXIMISING GENERATION

Trading realms

Virtual:

- Platform that will enable signals from the Merit
 Order to take priority –
 which is trading first:
 Heat, power or EV.
- Billing system to collect revenues customer and client side
- The Algorithms to predict demand and use

Physical

- The intelligent linking of buildings and infrastructure. E.g. using same trenching for cables to batteries as well as district heating (waster heat recovery)
- Using physical space to store energy
- Energy & Flex

Site level architecture

Co-ordination across sites

Technology to Support local trading

EVs and Air Source Heat Pumps will increase demand and constrain sub-station level.

Battery can help to store energy and use at the right times of day.

Buy and Sell signals will be key to earning revenues.

Revenue Derivation - Power

Electricity Supplier

- Behind meter savings
- I.e., kWh reduction
- I.e., DUOS savings
- I.e.. TRIAD savings

Elexon

- Balancing Mechanism
- Day ahead wholesale trading

National Grid

- STOR service - FFR service
- (Capacity Market)

UKPN

- Local DSR/STOR style services

Offsite Renewable Energy

- Remote renewable electricity supply sources - For green energy

BankEnergi

Aggregation Operation Financial settlement

BankEnergi Customer A Office type

BankEnergi Customer B University type

BankEnergi Customer C Hospital type

BankEnergi Customer D **Hotel type**

BankEnergi Customer E Arts & Ents

EVC City Hub/ Transport

Battery Storage Demand Side Response turndowns – AHUs etc. (Flex) Optimisation

Battery Storage Rooftop Solar PV Electric Vehicle smart charging

Battery Storage Rooftop Solar PV Demand Side Response (Flex) Combined Heat & Power (CHP)

Battery Storage Rooftop Solar PV Demand Side Response turndowns - AHUs etc. (Flex) Optimisation

Battery Storage Demand Side Response turndowns - AHUs etc. (Flex) Optimisation Rooftop Solar

Electric Vehicle smart charging Battery Storage grid scale Solar canopies

Revenue Derivation – Heat & Mechanical

Elecytricity Supplier

- Behind meter savings
- le. kWh reduction
- le. DUOS savings
- le. TRIAD savings

Gas Supplier

Reduce reliance on gas
 Emissions reductions
 e.g. CSR

District Heat Network ESCOs (Energy Centre)

Heat SuppliesElectricity supplies

BEIS Renewable He

- Renewable Heat Incentives (RHIs)

Offsite Renewable Energy

 Remote renewable electricity sources – ASHP & GSHP

BankEnergi

Aggregation
Operation
Financial settlement

BankEnergi Customer A
Office type

BankEnergi Customer B University type BankEnergi Customer C Hospital type BankEnergi Customer D Hotel type BankEnergi Customer E Arts & Ents

EVC City Hub/ Transport

Air Source Heat Pumps

Ground Source Heat
Pumps – Heating &
Cooling
Thermal Store
Phase Change material
District Heat Network
Inc. Waste heat recovery

Combined Heat & Power (CHP) Thermal Store Air Source Heat Pumps Combined Heat & Power (CHP) Thermal Store Solar Thermal Hot Water Ground Source Heat
Pumps – Heating &
Cooling
Thermal Store
Phase Change material
District Heat Network

Substation or battery heat recovery

Electrical demand

units):	ing electricity consu	illeu by ellergy
Clarence Electricity demand	267.7	MWh
McLaren Electricity demand	326.3	MWh
K2 Electricity demand	1,322.50	MWh
Keyworth Electricity demand	628.1	MWh
Total	2,544.50	MWh
Max electricity demand	0.6	MW

Options investigated:

A – Heat network with waste heat recovery from London Underground ventilation shaft

B – Heat network + PV

C - Heat network + PV + Battery

D - EVs

Option A - Heat network opportunities (with zero gas use)

Heat source: TfL ventilation shaft

Infrared picture of the London Road vent shaft

Vent shaft could easily supply all 3 buildings.

Following pavement for trenches rather than digging up roads

Energy Centre:

- HP
- Thermal store

Option B - Heat network + PV

Option C - Heat network + PV + Battery

Clarence basement + surrounding space – Allows approximately 1.35 MWh energy storage capacity
100 Tesla batteries

Technical Specs

Tesla Powerwall 2 has double the **capacity** of the original **Powerwall**. Therefore it has 13.5 kWh of usable energy storage **capacity**. It also has a much greater **power** output capability of 7kW peak and 5kW continuous. The **battery** has a 90% round-trip efficiency.

Options ABC - CAPEX comparison

	Amount	Cost per unit		Option 1A Vent shaft	Option 1B Vent shaft_with PV	Otion IC Vent shaft_with PV_Battery
HP size	1000	500	500000	500000	500000	500000
Store	200	50	10000	10000	10000	10000
cold store	100	50	5000	5000	5000	5000
Network metres	518	1000	518000	518000	518000	518000
vent shaft	1	200000	200000	200000	200000	200000
Total			1473000	1233000	1233000	1233000
Other	20%			246600	246600	246600
Total				1479600	1479600	1479600
Fees	22%			325512	325512	325512
Grand Total				£1,805,112	1805112	1805112
Pv	250	1000			250000	250000
battery	100	5000				500000
Grand Total					£2,055,112	£2,555,112

Option ABC - OPEX comparison

	Simple payback (Years)	IRR (25 years)	NPV (£ x 1000) (25 years) - Improvement Over Base Case	Operating Surplus 2021 (£ x 1000)	Opex Revenue Increase 2021 (£ x1000)	CO2 Saving (Tonnes/yr) (SAP10) Annual Avge over 25yrs
BASE CASE Existing Boilers	0	0.0%	0	-352	0	0
A - Vent Shaft WSHP	11.1	6.5%	474	-190	162	786
B- Vent shaft +PV	10.9	8.3%	1,163	-164	188	907
C - Vent shaft +PV+ Battery	10.8	8.4%	1,464	-115	237	877

Use Case 2: Office type building, Merit Order 1, Power only

Multi- tenanted single office building:

- Flexibility services
- Couple of EV charging points
- Location next to St. Thomas Hospital
- Revenues shared with BankEnergi and lower customer bills

Business Case:

- Based on Capacity markets, FFR, DUOS, TNUOS, Triads (or their future replacement)
- Potential to tie-up to St. Thomas' unexplored as yet.
- Potential to incorporate an external containerised battery for load shifting for EV charging

Use Case 3: KCL, London Bridge Private wire Hospital / Uni campus, Merit Order 3, Heat & Power

Space in Disused swimming pool basement:

- Flexibility services
- Couple of EV charging points
- Location next to Guys Hospital (other branch)
- Revenues shared with BankEnergi and lower customer bills

Use Case 3: Cont.

KING'S COLLEGE LONDO

B Chapel
C Doyle's House
D Greenwood Theatre

Boland House, Science Gallery London

E Henriette Raphael House

Business Case:

- Based on Capacity markets, FFR, DUOS, TNUOS, Triads (replacement of)
- Heat recovery in sumps pumps – borehole / battery
- Possible CHP

Use Case 4: EV – Merit Order EV

Rapid Chargers – 50kW in locations that are convenient and offer retail

- Flexibility services
- Couple of EV charging points
- Location next to Guys Hospital (other branch)
- Revenues shared with BankEnergi and lower customer bills
- Talking to an organisation to use spare headroom on Available Supply capacity

Use Case 4: EV - Merit Order EV cont.

Uptake - TfL license 21,000 licensed black cabs in London - 2,100 already EV 1,700 new EV cabs a year is the current run rate. 115,000 Private Hire Vehicles New vehicles will need to be Zero Emission Compliant by 2023

Electricity - kWh Cost to cabs has to be below 30p otherwise it becomes economic to run petrol range extender. kWh buy price – must be below 14p for IRR 9%. BankEnergi Ltd. (commercialization of project) will go for Energy Supply licence to supply energy to cabs.

Electricity Distribution Connection Cost - new sub-stations maybe show stopper

Parking - Unlocking under-utilised parking. Offer £20 per day per parking space

Charge points - New points required in order keep charge sessions to under 20 per day to avoid congestion

Potential scheme development

3 development zones

Southern scheme

- St. Thomas, Stangate, Beckett, Canterbury and Gassiot House, Westminster Bridge Road, Guys and St Thomas development
- 88k MWh annual heat demand
- 60% met by LZC source operating 5,500 hrs

Central scheme

- County Hall, Braeburn Development, Shell Tower, Elizabeth House development, Park Plaza, Whitbread, Waterloo International
- 21k MWh annual heat demand
- 60% met by LZC source operating 5,500 hrs

Northern scheme

- Royal Festival Hall, Queen Elizabeth Hall, National Theatre, Hayward Gallery, IBM, ITV, Coin Street development, Doon Street development, Stamford Street Apartments, IMAX, King's College London, Rambert dance
- 37k MWh annual heat demand
- 60% met by LZC source operating 5,500 hours

SUMMARY – Benefits of BankEnergi

www.bankenergi.com

info@bankenergi.com

c/o SBEG, Elizabeth House, London SE1