

Opportunities for decarbonisation through reuse of waste heat

Dr Joel Hamilton Heat Network Specialist Department of Business, Energy and Industrial Strategy (BEIS)

Importance of Heat Networks

- Today there are ~500,000 customers spread across 14,000 heat networks in the UK, of which ~2,000 are classed as district heating networks
- Heat networks currently provide 2% of UK heat demand and the Committee on Climate Change estimated in 2015 that with Government support, they could provide 18% of heat demand by 2050 in a least-cost pathway to meeting carbon targets. Our most recent research confirms this.
- Heat networks play a hugely important role in meeting carbon targets and reaching Net Zero.
- They can unlock otherwise inaccessible large-scale renewable and recovered heat sources such as <u>waste heat</u> from industry and heat from rivers and mines.

BEIS (2018) Energy Trends: Experimental statistics on heat networks (The experimental statistics may not wholly reflect the true position of the current heat network market due to networks not reporting or providing incorrect returns)

2 SIRACH: Opportunities for decarbonisation through reuse of waste heat

Positioning against other economic potentials

Economic Potential/2050 deployment

Department for Business, Energy & Industrial Strategy

Definition of Waste Heat

- Waste heat is thermal energy that is being rejected to ambient environment (e.g: air, rivers, sea or ground).
 - Note: we are interested in heat but it can also include coolth
- We should be advocating that energy use is optimised and therefore waste minimised before trying to capture it for heat networks
 - Sustainable use of resources at the core of any waste heat work
 - Do not encourage wasteful practices

4 SIRACH: Opportunities for decarbonisation through reuse of waste heat

Waste Heat in Heat Networks

- Waste heat is a low / zero carbon energy source which must be utilised to create a sustainable future and achieve net zero carbon emissions
 - Reduces peak demand on grid
 - Encourages good resource utilisation
- Heat networks facilitate waste heat utilisation
 - Allows heat to be moved from one place to another

Sources of Waste Heat – Cooling

- Where there is cooling there is waste heat!
 - The process of cooling something is to remove heat from that thing and we want to do something with that heat
- Chillers (e.g. food storage)
- Forced air (e.g. fans)
- Forced liquid
- Cooling towers (water or air)
- Vents (e.g. commercial kitchens)
- <u>Data centres!</u>
- Gas compression e.g. hydrogen transport
- Hydrogen Production

6 SIRACH: Opportunities for decarbonisation through reuse of waste heat

Other Sources of Waste Heat

- Sewage and waste water treatment
- Exhaust gases
- Underground railways
- Drying processes (e.g. paper)
- Electricity distribution

Waste heat research

Aims

 To understand which sectors might have most potential in terms of scale, location and cost

Image: Petroac https://renews.biz/66191/uk-project-explores-new-ways-torecover-waste-heat/

8 SIRACH: Opportunities for decarbonisation through reuse of waste heat

Targeted sectors

Waste heat category (*)	Sub-sectors
Electricity substations	
Industrial heat recovery	Cement, Chemical, Crematoria, Food and drink, Iron and steel, Lime, Other mineral industries, Paper and pulp
Commercial heat recovery	Cold stores, Data centres, Supermarkets, Underground railways
Waste water heat recovery	Treatment works (narrative discussion about in sewer heat offtake, but not mapped)

* Note that Energy from Waste had been covered by a separate study and is not included in the results shown here.

Department for Business, Energy & Industrial Strategy

Output #1: location, temp and scale

Source type	Medium	Number of	Assumed	Primary water	Total peak heat	Average	Total heat	Average waste
		locations	source	temperature	capacity across	installed heat	available across	heat available
		mapped	temperature	(°C)	all sites (MW)	recovery per	all sites	per site
			()			Sile (KVV)	(Gwn/year)	(wwwn/year)
Cement	Hot flue gas	10	338	90) 69	6,863	3 469	46,945
Iron and Steel	Hot flue gas	27	120	90) 195	5 7,227	7 1,539	57,018
Lime	Hot flue gas	6	338	90) 13	2,213	3 91	15,139
Crematoria	Hot flue gas	269	900	90) 75	5 280) 157	7 585
Substations	Oil	1,336	45	40	479	359	3,989	2,986
Data centres	Water	264	35	30) 1,940	7,347	7 16,153	61,187
Other mineral industries	Water	169	35	30) 65	387	7 504	2,984
Chemical	Water	125	32	27	<mark>7</mark> 94	751	703	5,628
Food and drink	Water	142	30	25	5 41	289	307	2,164
Paper and pulp	Water	10	30	25	5 11	1,121	80	7,980
Supermarkets	Refrigerant	4,853	23	18	3 1,439	296	5 7,981	1,645
Cold stores	Refrigerant	241	23	18	<mark>3</mark> 517	2,143	3,469	14,394
Underground railways	Air	65	22	14	<mark>.</mark> 39	595	5 322	4,953
Treatment works	Water	1,875	5 18	13	3 2,929	1,562	2 24,379	13,002
	TOTAL	9,392			7,906	5	60,145	5

Output #2: typical cost of heat recovery

Source type	Primary water temperature (°C)	Average / CAPEX benchmark (£/kW)	Average CAPEX per site (£'000)	Average OPEX per site (£'000/year)	Average LCOC (p/kWh)
Cement	90	238	1,514	178	0.55
Data centres	30	168	987	320	0.62
Treatment works	13	<mark>3</mark> 182	233	68	0.63
Other mineral industries	30) 184	70	16	0.64
Chemical	27	183	127	30	0.65
Food and drink	25	5 184	53	11	0.65
Paper and pulp	25	5 184	196	42	0.65
Iron and Steel	90	568	1,516	211	0.78
Lime	90) 495	1,066	66	0.78
Cold stores	18	634	976	58	0.85
Substations	40	828	285	10	0.90
Underground railways	14	834	483	24	0.95
Supermarkets	18	3 757	218	8	1.14
Crematoria	90	614	172	5	2.15

Although cost of capture may be low, some of these sources will need to be upgraded if they are to be used in a conventional heat network.

Waste Heat Research Summary

- There is currently a lot of waste heat generated across the UK
- Different sectors have different characteristics in terms of:
 - > The temperature of the heat
 - > The technology required to capture it
 - > Their location
- As a consequence the cost of heat recovery from different sectors is different.
- The geographic spread of heat across the UK does not align with that of demand everywhere but there are significant areas of overlap.

Heat Supply Source: BEIS – Opportunity Areas for District Heating Networks in the UK

203 Department for Business, Energy & Industrial Strategy

Data Centre

Locations

Northern Ireland Heat Demand Density Heat Supply Density

Source: BEIS – Opportunity Areas for District Heating Networks in the UK

14 SIRACH: Opportunities for decarbonisation through reuse of waste heat

Publications

Sustainable Resource Usage

- Reduce
 - Reduce the energy demand through energy efficiency
- Reuse
 - Reuse the energy in the process where possible
- Recycle
 - Use a heat network to take the waste heat to use it elsewhere

Complementary Workstreams

- Opportunity areas for district heating networks in the UK: second National Comprehensive Assessment
- Energy from Waste (EfW) study
- Waste heat from Water Sector
- · Heat Network Optimisation Opportunities (HNOO) scheme
- Heat Network Transformation Programme
 - Green Heat Network Fund (GHNF), Market Framework, Heat Network Efficiency Scheme (HNES), Heat Network Investment Project (HNIP)
- City DEEP Decarbonisation Projects (CDDP)
- Greening Existing Networks (GEN)
- Industrial Heat Recovery Support Programme (IHRS)
- Industrial Energy Transformation Fund (IETF)
- Waste Heat Recovery from Hydrogen Production by Embassy of Denmark

Department for Business, Energy & Industrial Strategy

Thank you

To SIRACH, IOR and other speakers

18 SIRACH: Opportunities for decarbonisation through reuse of waste heat