Data Centres & DH in Tallaght

Delivering data centre heat to buildings through a heat network

JOHN O' SHEA - CODEMA

Codema – Dublin's Energy Agency

Comhairle Contae

Fhine Gall

Council

Fingal County

Comhairle Contae

Átha Cliath Theas

South Dublin County Council

Where Codema Supports Local Authorities in DH

Planning & Policy:

1. Energy Master-Planning (demand, sources, constraints) -Identifying Opportunity Areas

2. Planning policy to promote DHC & low-carbon heat

3. DHC national steering group

4. Transition roadmap

5. EU policy recommendation papers

Business Case Development:

1. Techno-economic analysis & technology options appraisals (CBA, WLC, IRR, NPV etc.)

2. Business model options

3. Outline design & early optimisation

4. Risk analysis

Stakeholder Engagement:

1. Identifying stakeholders (roles

2. Effective communication (drivers)

3. Communication materials – Brochures, website etc.

4. Data sharing

Procurement & Contracting:

1. Technical advisors

2. Procurement strategy to leverage capacity & allocate risk – output based

3. Development of client requirements & standards

4. Bid evaluation

Project Delivery & Capacity Building:

- 1. Pipes in the ground
- 2. Workshops with planners
- 3. Working with 3rd level Institutions
- 4. Best practice
- 5. Funding applications
- 6. Training & upskilling for DHC

Impact on Ireland's Energy

- In 2028, 29% of all Electricity demand will come from Data Centre
- The growth in Data Centre demand will require close to €9 billion investment in generation and grid
- By 2030, Data Centres will be responsible for a 13% increase of carbon emissions on the grid

Data Centre Waste Heat

1 MWh of electrical load produces ~750 kWh thermal energy

Recovered heat temperature ranges: Air cooled 25°C - 35°C Direct liquid cooled 40°C - 60°C

Image from datacenterfrontier.com

Tallaght District Heating Scheme

Heat Source: Data Centre Waste Heat

TDHS Design Concept

Design Developed Through Competitive Dialogue

Cod

Dublin's Energy Agency

TDHS Design Concept

Code

Dublin's Energy Agency

The Heat Pump

- Refrigerant (GWP, ODP, Temps, H&S, F-gas regs)
- Compression stages/cascade
- Sizing and phasing maximise HP contribution with least financial burden
- TES (Accumulator tank, Buildings) reduce peaks, more cost-effective alternative to battery energy storage
- Effect of source & supply temperature regimes

Tallaght District Heating Scheme

Energy System benefits:

- CO₂ savings of ~1,400 tCO₂ per year for proposed Ph. 1
- Reduction in fossil fuel use for heating by 100%
- Cleaner air no particulates
- Utilises off-peak electricity
- Utilises waste heat which currently has no value
- Provides cooling as well as heating (high combined efficiency & lower water consumption)
- Integrates electricity and heat networks – allows balancing of the grid, greater utilization of renewable electricity

TDHS Specific Benefits

ER for the building detailed below is:	1
Address BER Hunder Exter of Issue Valid Urel Assessor Kumber Assessor Company No	The Building Energy Rating (BER) is an indication of the energy performance of this dwelling. It covers energy use for space heating, water heating, wertilation and lighting, actuated on the basis of standard occupancy. It is expressed as primary energy use per unit floor area per year (WHVm ² /yr 'A' rated properties are the most energy efficient and will tend to have the lowest energy bills.
Building Energy Rating KWIt/m ² /yr MOST EFFICIENT	Carbon Dioxide (CO ₂) Emissions Indicator kgCO ₂ /m ² /yr
25 A1) >26 A2) >50 A3)	0 0
>75 B1 >100 B2	
>125 83	
>150 C1	
>175 C2	
>200 C3) >225 D1	D1 Calculated
>260 D2	233.3 MM/mm/yr GLEAKagCO, Im/lyr
>300 E	
>340	E2
>380	F
>450	S S S S S S S S S S S S S S S S S S S
	The less CO ₂ produced the less the dwelling contributes to global
	List nerrole of

Developer benefits:

- Cost-effective Part L compliance lower cost than the counterfactual
- Improved reputation
- Higher RE
- Trench sharing e.g. fibre optics
- Less noise (ASHP ~ 40-60 dB eq. to light traffic/conversational speech)
- No carbon monoxide or fuel leak risks
- Lower maintenance
- Provides low-cost (5 to 10% reduction), low-carbon heat
- Space saving plant and TS are off site (€2350 per m²) https://www.codema.ie/images/uploads/docs/TDHS_Mar keting_Brochure_for_Developers.pdf

Relationship between stakeholders

Cod

Who Pays for What

TDHS Procurement – Handling Risk for DH Co.

- Output led approach to procurement set out client requirements to be met (CO2/MWh, RE/MWh etc.)
- ESCo's bid in with a heat supply price
- SDDH Co. commits a % of the capital up front (supported with capital funding from CAF and HeatNet) – remainder supplied by ESCo
- A portion of the capital expenditure by ESCo is paid back as a fixed monthly payment over the duration of the contract
- O&M has both fixed and variable elements
- Technical risk was assigned to the ESCo but DH Co. retain control/ownership of the asset

Data Centre Waste Heat Policy Recommendations Paper

RECOMMENDATION PAPER

From Data Centres to District Heating & Cooling: Boosting waste heat recovery to support decarbonisation

The dimate emergency calls for a swift and radical transformation of the energy system. Delivering sustainable heating and cooling is fundamental to achieving Europe's climate neurality ambition, as heating and cooling represent 50% of the final energy consumption in the EU.

The increasing reliance of our societies on digital infrastructures and data processing capacity will lead to increased demand in power and cooling. Since 2010, the global internet traffic has grown 12-fold. The resulting energy demand from data centres and data transmission networks was round 200 TWH and accounts for around 1% of global final electricity demand in 2019¹. This equals around 6% of the global district heating demand from 2014². It can be expected that the total data produced will increase by a factor of 4 by 2025¹.

The EU Green Deal proposes a path towards sustainable societies and EU leaders agreed on more ambitious greenhouse gas (GHG) emission reduction targets for 2030 and carbon neutrality by 2050. In its recert publications, the European Commission has put a strong emphasis on the decarbonisation, greater efficiency and circularity of the heating and cooling sector. The EU Digital Strategy²⁸ announced a commitment to make data centres climate-neutrality 2030, with actions to be put in place in 2021 to 2022.

In this perspective, waste heat recovery from data centres (DC) is bound to play an important role, since almost 100% of the electricity supply to the data centre is transformed into heat. Its recovery fosters greater energy efficiency for DC and supports the decarbonisation of district heating and cooling (DHC). There is significant heat recovery potential from unconventional waste heat sources, Approximately 1.2 EI (or 340 TWh) per year could be recovered from unconventional waste heat sources, including data centres, which corresponds to more than 10% of the EU's total energy demand for heat and hor twater⁴.

The DHC and the data centre sectors acknowledge the convergence and synergies between their sectors with the recovery and use of the waste heat generated when cooling data centre facilities into DHC.

The present paper is a joint effort between Euroheat & Power (EHP), representing the district heating and cooling sector and stakeholders from the data centre value chain, all committed to delivering on climate targets.

EHP is committed to pursuing the full decarbonisation of DHC networks in Europe before 2050, to contribute to the goals set out in the Paris Agreement*. Data centre operators and trade associations agreed to take action to make data centres **dimate neutral by 2030** and thus have the opportunity to provide carbon free thermal energy with the Climate Neutral Data Centre Pact (CNDP) *. The data centre sector is already on its way to be powered by 75% renewable energy in 2023 and 100% by 2030.

These sectors came together to propose recommendations on how to better support the uptake of DC waste heat recovery in the context of the European Commission's work on the "Fit for 55" legislative Package, as well as for the national implementation of EU rules and translation into local policies and planning.

¹ IEA analysis based on Massnert, E. et al. (2020). Recalibrating global data center energy-use estimates, Science, 367(6481), 984-986, https://doi.org/10.1126/scienceaba3758.
² Seen Werner, International review of district heating and cooling. Energy, https://doi.org/10.1016/j.energy.2017.04.045

OCD and age 2025 study
 Betshete apport export *Accessible Urban Waste Heat* https://www.nuscheat.eu/project-documents.newdetter/
 Sec.https://www.euroheat.org/np-content/splandu/2013/09/Dun-OHC-Decarbonsiation-PHodge.adf
 Sec.https://www.euroheat.newdettere.net/aff-regativery-initiative/
 Sec.https://www.euroheat.networkdatecarbon.end.edf
 Sec.https://www.euroheat.networkd

Recommendation Paper: From Data Centres to DHC - Boosting waste heat recovery to support decarbonisation

?

Email john.oshea@codema.iePhone (+353) 01 707 9818Web www.codema.ie

