Secondary heating and cooling opportunities in urban areas

AKOS REVESZ | Research Fellow | revesza2@lsbu.ac.uk

London South Bank University

Centre for Refrigeration, Air-Conditioning and Heat Pump Technologies

http://www.lsbu.ac.uk/research/research-interests/sites/centre-air-conditioning-refrigeration-research

What is the plan?

Secondary heat sources

Heat Source		Proximity to heat demand	Available year round	Typical source temperature
Power station rejection		×	\checkmark	35°C
Buildings		\checkmark	×	28°C
Industrial heat		X	\sim	35-70°C
Underground Railways		\checkmark	\sim	32°C
Electricity substations				50°C
Sewer heat mining				14-22°C
Data centres				35°C
Cable tunnels			\checkmark	Up to 40°C
Roads / Car parks		\checkmark	\checkmark	25°C

Uderground Railways

Heat on underground railways

Ground heat exchangers

Ventilation shaft waste heat recovery and cooling - MICAH

Ventilation shaft waste heat recovery and cooling - MICAH

Waste heat recovery from sewers - options

(a) Integrated heat exchangers

(b) External heat exchangers

Waste heat recovery from sewers – Integrated heat exchangers

"Walk-in channel" heat exchanger

Integrated in the concrete pipe

 \sim 2.5 kW/m² of heat exchanger surface can be achieved

Waste heat recovery from sewers – External heat exchangers

- Scottish Borders Campus in Galashiels
- 400 kW system
- Energy centre houses the heat recovery equipment along with the heat pumps, all associated pipework, vessels and the control systems
- HP CoP~4

CABLE TUNNELS AND SUBSTATIONS

Cable tunnels

Waste heat recovery from cable tunnels - options

Cooling of air supplied to tunnel with waste heat recovery

Waste heat recovery from air exiting tunnel

Cooling of air in tunnels using water pipes, with waste heat recovery

Waste heat recovery from transformers

- Tate Modern case study
- UKPN transformer
- 1 MW of waste heat recovery system
- 7000 MWh per year
- Saving 1400 tonnes of CO2e

Waste heat recovery from data centres

Total heat output of the sector in London is $\sim 86 \text{ MW}$

Waste heat recovery from data centres - options

UPS

CRAC Rack unit Water flow 20°C BITS and BYTES Chiller 70°C 30°C To Heat Water flow Water flow DHN pump 40°C 20°C

45°C

(a) Recovery of heat from air in data centre room

(b) Recovery of heat from chiller condenser

London South Bank University

10°C

Waste heat recovery from data centres - Example

Mäntsälä, Finland

- Using six heat pumps
- Total capacity 4 MW
- Supply enough heat for 1500 homes

MAPPING OF SECONDARY HEAT

SOURCES

3D Stock Model - UCL

CHALLANGES AND TASKS

- Develop fit for purpose technical solutions
- Optimise complex energy system of multiple renewable and secondary energy sources
- Develop new business models which will allow optimal operation / potential revenue streams
- Disseminate findings and results

SUMMARY

- Large quantity of secondary heat available in cities
- Already some great examples
- Important to establish new commercial models

THANK YOU

Akos Revesz London South Bank University revesza2@lsbu.ac.uk